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ABSTRACT

Understanding the extent to which natural streamflow characteristics have been altered is an important consideration for
ecological assessments of streams. Assessing hydrologic condition requires that we quantify the attributes of the flow regime that
would be expected in the absence of anthropogenic modifications. The objective of this study was to evaluate whether selected
streamflow characteristics could be predicted at regional and national scales using geospatial data. Long-term, gaged river basins
distributed throughout the contiguous US that had streamflow characteristics representing least disturbed or near pristine
conditions were identified. Thirteen metrics of the magnitude, frequency, duration, timing and rate of change of streamflowwere
calculated using a 20–50 year period of record for each site. We used random forests (RF), a robust statistical modelling
approach, to develop models that predicted the value for each streamflow metric using natural watershed characteristics. We
compared the performance (i.e. bias and precision) of national- and regional-scale predictive models to that of models based on
landscape classifications, including major river basins, ecoregions and hydrologic landscape regions (HLR). For all hydrologic
metrics, landscape stratification models produced estimates that were less biased and more precise than a null model that
accounted for no natural variability. Predictive models at the national and regional scale performed equally well, and
substantially improved predictions of all hydrologic metrics relative to landscape stratification models. Prediction error rates
ranged from 15 to 40%, but were �25% for most metrics. We selected three gaged, non-reference sites to illustrate how
predictive models could be used to assess hydrologic condition. These examples show how the models accurately estimate pre-
disturbance conditions and are sensitive to changes in streamflow variability associated with long-term land-use change. We also
demonstrate how the models can be applied to predict expected natural flow characteristics at ungaged sites. Copyright# 2009
John Wiley & Sons, Ltd.
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INTRODUCTION

The importance of natural hydrologic processes to the ecological integrity of rivers is well known (Poff et al., 1997;

Richter et al., 2003; Lytle and Poff, 2004), as is the notion that humans have dramatically altered river hydrology

worldwide (Pringle et al., 2000; Jackson et al., 2001; Nilsson et al., 2005; Poff et al., 2006). Early recognition that

certain minimum flows were required to maintain river biota (Bunn and Arthington, 2002; review in Tharme, 2003)

have evolved to a more comprehensive view of the dynamic nature of ecological flow requirements. The paradigm

of the natural flow regime (Poff et al., 1997) identified five major ecologically relevant components of streamflow:

magnitude, frequency, duration, timing and rate of change. In a variety of ways, these hydrologic components

maintain the chemical, physical and biological conditions that sustain biological diversity and ecosystem services

of rivers (Poff et al., 1997; Bunn and Arthington, 2002; Lytle and Poff, 2004). Evidence of the importance of these

hydrologic characteristics for river ecosystems is plentiful (Dynesius and Nilsson, 1994; Baxter, 1977; Jansson
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PREDICTING THE NATURAL FLOW REGIME 119
et al., 2000; Bunn and Arthington, 2002). There is also mounting evidence that alteration of flow regimes is

widespread (Nilsson et al., 2005; Poff et al., 2006, 2007), and potentially a major cause of ecological impairment

(Wilcove et al., 1998; Pringle et al., 2000).

The natural flow regime must be quantified to assess hydrological alteration, but doing so has been a difficult

challenge (Arthington et al., 2006). Attributes of the natural flow regime have been quantified for specific river

systems using a variety of methods (Richter et al., 1997b; Acreman and Dunbar, 2004; Arthington et al., 2006),

which provided benchmarks for the restoration of rivers known to be affected by hydrologic modification. Such

predictions are often based on historic (e.g. pre-disturbance) flow records (Richter et al., 1997a; Henriksen et al.,

2006) or modelled using data from nearby streamgages. Such pre-disturbance periods of record are undefined,

however, for most gaged streams and non-existent for ungaged streams. Approaches to extrapolate estimates of

hydrologic indices beyond known undisturbed basins have been suggested (Richter et al., 1997b), but we still have a

limited ability to quantify expected flow regimes for most types of streams, especially at regional or national scales

(Arthington et al., 2006).

The conceptual framework successfully employed for many years in biological assessments may also be

applicable to hydrological assessments. Biological assessments require estimates of attributes (e.g. taxa richness

and composition) expected in the absence of anthropogenic disturbances (Wright et al., 2000). The reference

condition approach (Bailey et al., 2004) is widely used in bioassessments of freshwater ecosystems and is framed

around two general concepts. First, the expected condition (hereafter ‘E’) is site-specific, and derived from a

collection of reference (i.e. under the least amount of human influence for a given region) sites that are

environmentally similar to the site being assessed. This approach acknowledges the natural spatial and temporal

variability associated with reference ecosystems. The second concept is that natural environmental characteristics

can be used to explain variation in, and therefore make predictions for, ecological characteristics of reference sites.

These models are used to make predictions of E at sites being assessed (Bailey et al., 2004). Because natural

streamflow regimes are influenced by climate, soils, geology and other environmental characteristics (Puckridge

et al., 1998; Poff et al., 2006), the rationale for empirically based estimates of E is compelling. The assessment is

accomplished by quantifying the degree to which observed (O) conditions deviate from expected natural (E)

conditions (Wright et al., 2000), which in concept as also been proposed and applied in hydrological assessments

(Richter et al., 1997b; Arthington et al., 2006).

There are many published empirical models for predicting various attributes of the hydrologic regime

(e.g. Sanborn and Bledsoe, 2006), but most have been applied to a limited number of hydrologic attributes and

geographic regions. Further, the criteria for selecting reference sites, when adequately described, have been applied

inconsistently among studies, thus limiting the ability to generalize. To our knowledge, most published empirical

models were intended to predict observed (O) hydrologic attributes of ungaged basins, but none have applied this

concept to establish an expectation (E) that is subsequently compared withO to assess alteration. Finally, no models

have been applicable at scales sufficient for regionally or nationally consistent assessments of hydrologic alteration.

This paper describes the application and evaluation of the reference condition approach (sensu Bailey et al.,

2004) to the assessment of hydrologic alteration. We first describe an exhaustive screening and reference-site

selection process for streamgages across the conterminous US.We then evaluate the performance (i.e. precision and

bias) of alternative modelling approaches for predicting metrics of the natural flow regime for these relatively

undisturbed basins. We conclude with three case studies to illustrate how modelled estimates of E can be compared

with observed (O) values at gaged sites to obtain a quantitative measure of hydrologic alteration.
METHODS

Selecting reference sites

Fundamental to the reference condition approach is identifying a collection of sites that are minimally influenced

by human activity and that encompass the full range of environmental conditions (e.g. stream size) of sites for

which assessments are desired (Bailey et al., 2004). One challenge is that the absolute quality of reference sites

varies among different regions. For example, many basins in the western US remain in relatively pristine condition

and can be considered representative of ecosystems largely undisturbed by human activity. In regions (e.g. U.S.
Copyright # 2009 John Wiley & Sons, Ltd. River. Res. Applic. 26: 118–136 (2010)

DOI: 10.1002/rra



120 D. M. CARLISLE ET AL.
Midwest) with long histories of intense landscape alteration, however, reference sites are ‘least disturbed’ or in

‘best available’ condition given current socioeconomic realities. We followed the recommendations of others

(Bailey et al., 2004; Stoddard et al., 2006; Whittier et al., 2007) and applied numerous quantitative and qualitative

criteria to identify gaged streams throughout the conterminous US that were, with respect to hydrology, minimally

(i.e. pristine) or least disturbed (i.e. best available).

About 22 000 streamgages have been operated by the US Geological Survey (USGS) during the period 1950–

2005. This study was limited to data from sites on perennial, small to medium-sized rivers (<50 000 km2) for which

environmentally similar reference sites would likely be available and for which at least 20 years of flow records

exist. Richter et al. (1997b) and Henriksen et al. (2006) found that 20 years was the minimum period of record for

obtaining reliable estimates of streamflow characteristics. About 50 sites on highly intermittent streams (i.e.

exhibited no flow for>6mos year�1) were excluded because they are poorly represented in the streamgage network

and likely require a unique approach for understanding the natural streamflow characteristics (e.g. Fritz and Dodds,

2005). This preliminary screening process resulted in 5271 gages retained for further consideration (Figure 1).

We established several quantitative and qualitative measures to select reference sites from the candidate set of

5271 gages. Measured streamflow data were generally not used as screening criteria (one exception below) to

minimize circularity in the assessment process (Bailey et al., 2004; Stoddard et al., 2006). We calculated several

quantitative indicators of potential hydrologic modification using widely available geospatial databases (Table I),

including the presence of water conveyance systems (e.g. canals and pipelines, Horizon Systems Corporation

2006), the locations and characteristics (e.g. storage capacity) of dams (USACE, 2006), locations of major pollutant

dischargers (e.g. wastewater facilities, USEPA, 2006a), the extent of impervious land cover in the basin (Vogelman

et al., 2001) and water withdrawals (USGS, 2007a). For each geospatial indicator, each site was scored (0–8) based

on its value relative to various percentiles of the distribution of the metric among all sites nationally. Scores were

then summed across all indicators producing an index of relative hydrologic impact for each site. Sites with index

scores in the lowest quartile for each region (see below) were given highest consideration as possible reference, but

additional criteria were also applied. Qualitative site-specific characterizations of hydrologic modification,

including site descriptions published in USGS annual data reports (USGS, 2007b) and our own examinations of

7.5-min topographic maps and imagery were also used because of the inherent uncertainty in the databases used to
Figure 1. Streamgages in the conterminous US for which �20 years of continuous flow records exist since 1950, and that were screened for
designation as reference quality for hydrologic analysis. The major hydrologic regions (HUC2) used in this study are also shown
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Table I. Geospatial indicators of potential hydrological modification used to screen reference-quality gaged river basins in the
conterminous USA

General description Indicators Data source

Land cover Urban land cover in basin Vogelman et al., 2001
Urban land cover in mainstem 600m buffer
Agricultural land cover in basin
Agricultural land cover in mainstem 600m buffer
Mining and transitional land cover in mainstem 600m buffer

Dams Density of major dams in basin USACE, 2006
Linear distance of gage to nearest dam
Increase in reservoir storage 1950–2005
Dams/mainstem km

Road density Road density in basin GeoLytics, 2001
Water conveyances Per cent of stream length coded as canal/ditch/pipeline Horizon Systems, 2006
Major dischargers Linear distance of gage to nearest major discharger USEPA, 2006a
Water withdrawal Freshwater withdrawal USGS, 2007a
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generate geospatial variables. These qualitative data sources often revealed small diversions or other flow-

regulating structures in the contributing basin or near streamgages. For sites in areas of irrigated agriculture,

monthly discharge values were estimated using a water balance model (Wolock and McCabe, 1999) and compared

to the observed monthly discharge to determine if irrigation withdrawal was significantly influencing streamflow

during the growing season. After considering all of these criteria for each of the 5271 gaged sites, we classified each

site as reference or non-reference.

Hydrologic data and metric selection

We selected 13 hydrologic metrics with the goal of evaluating how well each could be predicted using various

modelling approaches. It was beyond the scope of this study to evaluate all metrics currently in use (see Olden and

Poff, 2003). Rather, we selected metrics that represent ecologically relevant components of the flow regime (Poff

et al., 1997) (Table II) and have been used by others. Twelve metrics were calculated using the algorithms of

Henriksen et al. (2006), and one (skewness) was calculated using the unbiased method of Yevjevich (1972). All

calculations were based on the entire period of record for each reference site (20–50 years). Many hydrologic

metrics are calculated annually, and can therefore be represented as a distribution of yearly values for a given site.

For conveniencewe built models for the median value of such metrics. Our final dataset therefore contained a single

value of each of 13 hydrologic metrics for each reference site.

Evaluation of model performance

We used average (mean) and variability (SD) of the distribution ofO/E values among reference sites as a measure

of model performance. O for each site was the calculated value of each hydrologic metric, but E was derived in

several ways (see below). Although in theory O/E should be unity at reference sites, measurement error (of

hydrologic metrics and geospatial predictors) and variation left unexplained by the model produce a distribution of

O/E values among reference sites (Bailey et al., 2004). This variation among reference siteO/E values represents, in

theory, the uncertainty with which the model would be applied to predict E at test sites. Minimizing this uncertainty

would therefore improve our ability to statistically detect more subtle deviations from E at test sites. We used the

root mean square error (RMSE) as a measure of the relative performance of each model (Van Sickle et al., 2006)

because it accounts for both bias and precision of model predictions. Differences in the RMSE of reference siteO/E

values can be attributed to the success with which each model accounted for natural variation in E. Hence, models

producing the lowest RMSE were deemed superior (see Hawkins et al., 2000b; Ostermiller and Hawkins, 2004;

Linke et al., 2005; Van Sickle et al., 2005).
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Table II. Hydrologic metrics examined in this study and their general class of hydrological attribute

Description Attribute Units Source

Daily variability Average Per cent of mean Henriksen et al., 2006
Skewness� Average Dimensionless Yevjevich, 1972
Annual runoff� Average m3 sec�1 km�2 Henriksen et al., 2006
Base flow index Low flow Dimensionless Henriksen et al., 2006
Annual maximum flow� High flow m3 sec�1 km�2 Henriksen et al., 2006
Low flow pulses� Low flow events year�1 Henriksen et al., 2006
High flow pulses� High flow events year�1 Henriksen et al., 2006
Low flow duration� Low flow days year�1 Henriksen et al., 2006
High flow duration� High flow days year�1 Henriksen et al., 2006
Flood interval� High flow days year�1 Henriksen et al., 2006
Flood-free days� High flow days year�1 Henriksen et al., 2006
Predictability Average Dimensionless Henriksen et al., 2006
Reversals� Average days year�1 Henriksen et al., 2006

Descriptions coded with ‘�’ are metrics for which the median value across years in the period of record was modelled.
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Alternative models for predicting E

Our primary objective was to evaluate how well various modelling approaches predict E for each hydrologic

metric. Classification of sites into discrete regions is a common approach in ecological assessments (Hawkins and

Norris, 2000), and is based on the assumption that homogeneity of environmental conditions within regions will

produce more accurate and precise estimates of expected ecological attributes (i.e. E) than estimates that do not

‘control’ for natural variation. We first developed a null model (hereafter null) that did not account for natural

variability in E. For each metric, we calculated the median observed value across all reference sites nationwide and

applied this value as E for all sites. We then calculated O/E for each reference site using this constant value of E.

Although it is clearly unrealistic to assume that Ewould be constant across the nation for any hydrologic metric, the

performance of this model is a useful baseline from which to compare how well the other approaches account for

natural variation (Van Sickle et al., 2005). We then considered three landscape stratification/classification ‘models’

to derive estimates of E.

Our first landscape stratification model was based on 2-digit Hydrologic Unit Codes (hereafter HUC2s), which

are aggregations of large river basins (Figure 1). We identified the HUC2 for each site, then aggregated some

adjacent HUC2s to obtain at least 100 reference sites within each unit. We calculated O/E for all reference sites

using a constant value of E for each HUC2, which was the median observed value of each metric across all

reference sites within that unit.

The second stratification model was an increasingly more homogenous geographic region—level 3 ecoregions

(USEPA, 2007). Previous studies (Richter et al., 1997b; Sanborn and Bledsoe, 2006) have suggested that

ecoregions are a viable framework for predicting natural flow regimes because they are relatively homogenous in

the environmental factors known to affect flow regimes (e.g. climate, geology, soils). We assigned each site to the

ecoregion in which the majority of the basin fell, then aggregated enough adjacent ecoregions to obtain

>10 reference sites within each region. We then calculated O/E for all reference sites using the median of observed

values within each level 3 ecoregion for E.

We used hydrologic landscape regions (HLR) (Wolock et al., 2004) as our third stratification approach. HLR

are aggregate river basins that share similar environmental factors (e.g. climate, soils, topography) known to

influence streamflow. Unlike ecoregions or HUC2s, however, HLRs are not constrained to be contiguous, and

therefore classify basins based on similarities believed to be relevant to hydrology irrespective of geographic

location. We assigned each site to the HLR identified byWolock et al. (2004) in which the majority of the basin fell.

We then calculated O/E for all reference sites using the median of observed values within each HLR for E. Our

estimates of precision for all stratification models were not calculated from independent (e.g. cross-validation)

samples. We felt that sample sizes were too small in some regions to omit an adequate number of reference sites
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PREDICTING THE NATURAL FLOW REGIME 123
(e.g. 30–50) for an independent evaluation of bias and precision. As a consequence, performance for the

stratification methods was probably overestimated.

In addition to the three landscape-stratification models, we developed models that made site-specific predictions

of E using empirical relationships between variation in hydrologic metrics and environmental attributes among

reference sites (sensu Bailey et al., 2004). We developed a single national model and HUC2-specific models for

each hydrologic metric. We used a modelling method, random forests (RF) (Breiman, 2001), that is relatively new

to ecology, but has proved to be more robust and accurate than traditional linear (e.g. multiple linear regression) or

more complex (e.g. neural nets) methods (Lawler et al., 2006; Prasad et al., 2006; Cutler et al., 2007). RFs were

developed as a method of improving the predictions of classification and regression trees (Liaw and Wiener, 2002;

De’ath, 2007). A detailed description of the method is beyond the scope of this paper, but we provide a brief

overview relevant to our results (also see Breiman, 2001). Classification and regression trees have been widely used

for prediction and description in ecological studies because they have several desirable properties (De’ath and

Fabricus, 2000), including the ability to model nonlinear relationships and interactions among predictors. RF were

developed to alleviate one major concern of regression trees—that of overfitting (Hastie et al., 2001). In essence,

RF produce thousands of regression trees, each with a bootstrapped sample of 70% of the observations where a

randomly selected subset of the predictor variables is considered at each branch. The remaining 30% of

observations are passed through each tree to evaluate predictive performance. On average, each observation is

omitted from 1/3 of the trees, and the final prediction for each observation is obtained by averaging the predictions

across all the trees where it was excluded. This cross-validation produces estimates of error that are close to what

would be expected with independent data. The relative importance of predictors is also evaluated using the left-out

observations. The predictive ability (RMSE in regression) of omitted observations is first calculated. Then, each

predictor is in turn randomly permuted and the change in RMSE noted. The predictors are ranked by the per cent

increase in RMSE obtained when each is permuted. The most important predictors will cause the largest decrease in

RMSE when permuted. In sum, RF are a form of model averaging that has proved useful at ‘learning’ (sensu Hastie

et al., 2001) from large datasets. We are not necessarily advocating the use of RF over more traditional methods,

and a comparison of predictive ability among various approaches was beyond the scope of this paper. Rather, we

selected a robust modelling approach that we felt would maximize our ability to make predictions of E. For all

predictive models we used 80 predictor variables (Table III) representing climate, geology, soils, topography and

geography. The RF models were performed with an implementation written for the R statistical system (R

Development Core Team, 2006) by Liaw and Wiener (2002). Each RF model produced 2000 individual regression

trees, and E for each site was obtained by averaging its predicted value across trees (n� 500) where it was withheld

from model development. We calculated O/E for each metric using a predicted value of E from the single national

RF model and a predicted value of E from each HUC2-specific RF model.

We hypothesized that, relative to the null model, increasingly refined landscape classifications (i.e. HUC2s,

ecoregions, HLR) would provide progressively greater performance in estimates of E. We also expected that

HUC2-predictive models would be more precise and less biased than a national model, but that both modelling

approaches would produce better estimates than any of the stratification models. Because estimates of E from RF

models are directly calculated from observations excluded from model development, we are confident that our

estimates of model performance are similar to that encountered if applied to non-reference sites.

Example hydrologic assessments

In two ways, we illustrate the application of predictive modelling described in this paper. First, in the course of

screening reference sites we excluded many that were influenced by proximal reservoirs constructed during the

1970s and 1980s and where a relatively unregulated gaged record exists from before dam construction. We

reasoned that if the predictive models were capable of simulating the natural flow regime, predictions of E should

agree with O from the pre-dam period. We randomly selected two such sites (USGS gages 05592000 and

01151500) that had recorded at least 20 years of flow before and after dam construction. To the best of our

knowledge, therewere no known hydrologic alterations prior to dam construction.We illustrate the assessment with

a single hydrologic metric that we suspected would be sensitive to dams and other human activities in the

watershed—daily variability. For each site, we generated a distribution of predictions by recording the individual
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Table III. Variables used in models to predict hydrological metrics among reference streams in the conterminous USA

Basin topography and location (USGS, 2006)
Latitude
Longitude
Drainage area
Standard deviation of elevation
Relief ratio (Pike and Wilson 1971)
Site (gage) elevation
Mean basin elevation

Climate (Daymet, 2006)
Mean annual precipitation
Mean monthly maximum precipitation
Mean monthly minimum precipitation
Mean annual number of days with precipitation
Mean monthly maximum number of days with precipitation
Mean monthly minimum number of days with precipitation
Mean monthly precipitation. (January—December)
Mean relative humidity
Potential evapo-transpiration
Mean annual temperature
Mean monthly maximum temperature
Mean monthly minimum temperature
Standard deviation of maximum monthly temperature
Standard deviation of minimum monthly temperature
Mean Julian date of first frost
Mean Julian date of last frost
Mean monthly temperature (January—December)

Soil properties (USDA, 2006)
Per cent basin soils in each of seven hydrologic groups
Mean permeability
Mean water capacity
Mean bulk density
Mean organic matter
Mean depth of water table
Mean soil thickness
Mean per cent clay, silt, sand
Mean per cent fine and coarse soils
Mean soil erodibility factor (from Universal Soil Loss Equation)
Mean runoff factor (from Universal Soil Loss Equation)

Geology (Reed and Bush 2005)
Per cent of basin each of nine geological classes
Dominant geologic class in basin
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estimates of E from each tree (n¼ 2000) in the RFmodel. We then visually compared the observed (O) metric value

to this distribution of modelled estimates. We also selected a gaged basin near Washington, DC (USGS gage

01654000) that has undergone substantial land-use change. We selected this site to demonstrate the modelling

approach for a basin without a discrete hydrological alteration and, therefore, a pre-disturbance record. The

streamgage has operated continuously since 1949, during which time the basin has been transformed from a mixed

forest and pastoral landscape to an urban setting (Jennings and Jarnagin, 2002). We partitioned the flow record into

20-year blocks (1950–1970, 1960–1980, etc.) through 2000 and calculated daily variability of flow (O) for each

time period. We then used the RF national model to generate a distribution of predictions of E for this metric (which

was the same for each time period) and calculated O/E for each time period.

For these example assessments, we graphically compared the O/E value of the metric (i.e. for each time period)

to the distribution of O/E values for all reference sites across the nation. A frequent aim of environmental
Copyright # 2009 John Wiley & Sons, Ltd. River. Res. Applic. 26: 118–136 (2010)
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PREDICTING THE NATURAL FLOW REGIME 125
assessment is to make an inference about whether observed conditions at a test site are different (with some known

level of certainty) from expectations (i.e. reference), given the error associated with natural variability and the

measurement and modelling processes. The distribution of O/E values among reference sites provides the basis for

making decisions about the likelihood that a test site is significantly different (i.e. altered) from reference condition

(Bailey et al., 2004; Stoddard et al., 2006). Thresholds defined by standard deviations or percentiles of the reference

site distribution are frequently used to establish classes of severity of alteration (Wright et al., 2000; Bailey et al.,

2004). Ultimately, assessment thresholds based on statistical significance, ecological relevance and societal values

should be determined, but this was beyond the scope of our study.

A second application of the models we developed is the prediction of expected natural flows for ungaged

segments of a river network. This application may be of interest to managers seeking the establishment of baseline

conditions or setting goals for the protection of natural flows. We selected the Provo River basin in Utah to illustrate

this application. The Provo River headwaters are located within a roadless, high elevation (up to 3000m above sea

level) basin. In its middle reaches, the river receives intrabasin water transfers from two separate drainages and is

impounded in two large reservoirs. Abstractions for irrigation and municipal water supplies are made near the river

terminus into the Great Salt Lake system. Five USGS streamgages with flow data from recent (1980–2000) years

are located in the basin, none of which was used in model development. We calculated the GIS-based predictor

variables for the upstream basin of every 30-m pixel located on the stream network, then used the RF model to

predict E (days year�1) for low flow duration for the entire network. We also calculated O/E for low flow duration

(mean value from 1980 to 2000) for each of the five streamgages.
RESULTS

Reference sites

Our selection criteria yielded 1272 reference sites, which averaged 803 km2 in basin size (range 2–2579) and

were fairly uniformly distributed geographically across the conterminous US (Figure 2). Basins of reference sites

were generally smaller and of slightly steeper topography than non-reference sites (Table IV), but were otherwise

similar in natural characteristics.

Model performance

Regional stratification appeared to successfully account for some natural variation in E. Relative to null,

estimates of E derived from any form of regional stratification markedly improved model performance (i.e. RMSE)

for all metrics (Table V). With one exception (base flow index), ecoregion stratification produced better model

performance than regionalization by HUC2 or HLR. Estimates of E derived from ecoregions improved

performance by 12–60% relative to the null model.

RF predictive models accounted for substantially more natural variation in E than the best stratification (level 3

ecoregion) method (Table V). For all metrics, performance of the national-scale model was equal to that obtained

by HUC2-specific models. Models using estimates of E derived from the national RF performed 9–61% better than

models using E derived from ecoregion stratification.

Performance of RF predictive models varied substantially among hydrologic metrics (Table V). For most metrics

RMSE ranged from 15 to 30%, but for models of low duration (RMSE¼ 0.34) and maximum flow (RMSE¼ 0.40)

were somewhat higher. Models of metrics of average (Table II) flow conditions tended to perform (RMSE¼ 0.15–

0.27) slightly better than models for high flow (RMSE¼ 0.15–0.40) and low flow (RMSE¼ 0.23–0.34).

The importance of predictor variables in RF models differed among metrics and spatial scales (Figure 3). Many

of the 80 predictor variables were highly correlated (results not shown), and although this does not adversely affect

RF predictions, measures of variable importance tend to be averaged among sets of highly correlated variables

(Cutler et al., 2007). We therefore limit our interpretation of variable importance to broad groups of correlated

variables. Variables describing patterns in precipitation were the most important predictors for most metrics at the

national scale. The 10 most important predictors for each hydrologic metric at the national scale (Appendix)

included combinations of climate, soils, topography and geographic location. The most important predictors varied
Copyright # 2009 John Wiley & Sons, Ltd. River. Res. Applic. 26: 118–136 (2010)
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Figure 2. Reference-quality streamgages in the conterminous US relative to the major hydrologic regions (HUC2) used in this analysis
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among metrics in the HUC2-specific models. Soil properties, precipitation and topography were the most important

predictors of average flow metrics. Precipitation, soil properties and air temperature were the most important

predictors of high flow metrics. Soil properties and air temperature were the most important predictors of low flow

metrics.

Example assessments

Modelled estimates of E agreed well with observed data at sites with pre-dam flow records. Estimates of

E derived from the national model were centred on observed values of daily variability from pre-dam flow records

at both sites ( Figure 4, Figure 5). Similarly, O/E values for daily variability from pre-dam periods were close to

unity and well within the variability observed at reference sites across the nation. In contrast, observed values from

post-dam flow records were well outside and much lower than model expectations for site 05592000, and the O/E

value was well outside the reference-site distribution, indicating substantial hydrological alteration. For site
Table IV. Select environmental attributes of gaged river basins identified as reference-quality (n¼ 1272) and non-reference
(n¼ 3945) across the conterminous US

Variable Reference Non-reference

10th, 90th Median 10th, 90th Median

Basin size (km2) 31, 1820 274 73, 10 569 923
Mean basin slope (%) 1, 33 10 1, 26 6
Mean basin elevation (m) 97, 2321 497 119, 2350 424
Urban land cover (%) 0, 3 0 0, 16 1
Storage change (106 L km�2) 0, 8 0 0, 273 8
Canal/ditch/pipeline (%) 0, 0 0 0, 10 0
Water withdrawal (106 Lyear�1 km�2) 1, 31 4 1, 45 8
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Table V. Mean (X), standard deviation (SD) and root mean square error (RMSE) of O/E for 13 hydrologic metrics across 1272
reference gages based on alternative approaches for estimating E

Metric Null HUC 2 Ecoregion 3 Hydrologic
region

National model HUC 2 model

X SD RMSE X SD RMSE X SD RMSE X SD RMSE X SD RMSE X SD RMSE

Daily variability 1.06 0.42 0.42 1.01 0.34 0.34 1.01 0.31 0.31 1.01 0.34 0.34 0.99 0.24 0.24 0.99 0.24 0.24
Skewness 1.09 0.50 0.51 1.06 0.51 0.51 1.03 0.34 0.34 1.10 0.51 0.52 0.99 0.19 0.19 1.00 0.20 0.20
Annual runoff 1.31 1.37 1.40 1.28 1.31 1.34 1.09 0.68 0.69 1.22 1.25 1.27 0.98 0.27 0.27 0.97 0.27 0.27
Base flow index 1.01 0.43 0.43 1.03 0.42 0.42 1.04 0.40 0.40 1.00 0.39 0.39 0.99 0.25 0.25 0.99 0.25 0.25
Maximum flow 1.17 1.02 1.04 1.35 1.52 1.56 1.18 0.90 0.92 1.29 1.27 1.29 0.97 0.40 0.40 0.96 0.39 0.39
Low flow pulses 1.03 0.37 0.37 1.02 0.32 0.32 1.03 0.29 0.30 1.02 0.35 0.35 0.99 0.23 0.23 1.00 0.23 0.23
High pulses 1.00 0.53 0.52 1.06 0.50 0.51 1.04 0.34 0.34 1.07 0.49 0.49 0.98 0.24 0.24 0.99 0.23 0.23
Low duration 1.23 0.75 0.78 1.14 0.57 0.58 1.08 0.44 0.45 1.18 0.64 0.67 0.99 0.34 0.34 0.99 0.35 0.34
High duration 1.56 1.37 1.48 1.25 0.92 0.95 1.09 0.58 0.59 1.16 0.67 0.69 0.98 0.29 0.29 0.98 0.30 0.30
Flood interval 1.02 0.37 0.37 1.04 0.36 0.36 1.02 0.32 0.32 1.04 0.39 0.40 1.00 0.29 0.29 1.00 0.29 0.29
Flood-free days 1.01 0.28 0.28 1.06 0.32 0.32 1.01 0.19 0.19 0.97 0.22 0.23 1.00 0.15 0.15 1.00 0.16 0.16
Predictability 0.99 0.28 0.28 1.01 0.27 0.27 1.01 0.24 0.24 1.02 0.26 0.26 1.00 0.18 0.18 1.00 0.19 0.19
Reversals 0.98 0.21 0.21 0.99 0.19 0.19 1.00 0.17 0.17 0.99 0.20 0.20 1.00 0.15 0.15 1.00 0.15 0.15
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01151500, however, post-dam observations were similar to pre-dam observations, and the O/E ratio was relatively

unchanged from the pre-dam period.

Modelled estimates of E for daily variability at site 01654000 revealed substantial departures from the natural

flow regime (Figure 6) through time. Observed values from the first 20 years of record were substantially larger than

predictions of E, and values from subsequent 20-year periods continued to increase. O/E ratios were markedly

outside the reference-site distribution for all time periods, indicating progressively more severe hydrological

alteration through time.

The expected duration of low flows varied from 53 to 88 days year�1 throughout the Provo River basin (Figure 7),

and appeared to be significantly altered in some segments. Observed low flow duration (days year�1) was close

(O¼ 59) to expectations (E¼ 53–60) at the uppermost gage, but 4-50� less (O¼ 1–16) than expected (E¼ 60–70)

at the next three downstream gages. In contrast, observed low flow duration (O¼ 183) at the most downstream gage

was �3� greater than the expected (E¼ 60–70) natural condition.
DISCUSSION

Hydrological assessment is the process of determining whether human activity has altered the hydrological

attributes of an ecosystem. Central to this process is a specification of the hydrological attributes that are expected

in the absence of human modifications (i.e. pristine condition) or that are least modified given current

socioeconomic and ecological limitations (i.e. best attainable, sensu Stoddard et al., 2006). A major distinction of

our approach is that metrics of the expected natural flows (i.e. E) are predicted using climate, topography, soils and

geology with a single national-scale model. A predictive model allowed us to quantify the natural flow regime for

rivers that lack pre-disturbance flow records, which greatly increases the number of streams that can be assessed.

Successful use of predictive models for hydrological assessments requires that models accurately predict the flow

regime that should occur under undisturbed conditions. In addition, these predictions need to be made with

sufficient precision that ecologically meaningful departures from the natural flow regime can be reliably detected.

Model performance and interpretability

Predictive models have promise for quantifying the reference conditions needed for assessing hydrological

alteration, but our results suggest that more work may be needed to improve model performance and metric

selection. Although the most precise estimates of E were obtained from predictive models, model error remained
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Figure 3. The frequency (% of total models) that an individual variable within each general category was ranked as the most important predictor
by random forests models developed at a national scale (13 models, A), and at HUC 2 scales (117 models, B). General categories of predictors:

locat¼ latitude & longitude, precip¼ precipitation, soil¼ soil properties, temp¼ air temperature, topo¼ topography and basin size
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relatively high (e.g. >20%) for most metrics. Consequently, only rather substantial (e.g. >20%) departures from

natural hydrologic conditions are reliably detectable using our models, depending on the statistical thresholds used.

What remains unknown is the magnitude of hydrologic alteration that elicits biological responses (Arthington et al.,

2006), and therefore what level of precision is required of methods used in hydrologic assessments. If, for example,

biological communities are influenced by changes in a metric of <10%, none of the methods we examined would

be sufficient to detect ecologically meaningful departures from the natural flow regime. By comparison, precision

of biological metrics is frequently <20% (Wright et al., 2000; Ostermiller and Hawkins, 2004, Van Sickle et al.,

2007), but national assessments have been performed using biological indicators with precision slightly >20%

(USEPA, 2006b).

The utility of predictive models is enhanced if the underlying associations between predictor variables and

hydrologic metrics are interpretable. Our nationwide models showed the dominant, continental-scale effects of

precipitation patterns on hydrologic attributes, which have been reported in previous work (Wolock and McCabe,

1999). At regional scales, hydrologic attributes appeared to be influenced by local-scale factors such as soil

properties and basin topography in addition to climatic factors (e.g. temperature and precipitation). An exhaustive

analysis of the environmental factors that influence streamflow properties at various spatial scales is beyond the

scope of this paper, but would likely identify predictors that would improve future predictive models.
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Figure 4. Observed daily flow variability of pre- and post-dam time periods compared to distribution of modelled expectations at gage #
05592000 (A). Ratios of observed and expected (¼mean of expected distribution) flow variability for each time period compared to distribution

of O/E values at reference sites nationwide (B)
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Alternative approaches for predicting the natural flow regime

Amajor objective of landscape partitioning in environmental assessments is to improve precision of estimates of

the expected condition by ‘controlling’ for natural variation (Hawkins and Norris, 2000). Regions are often a

dominant framework for biological assessments, but there is significant evidence that environmental heterogeneity

within ecoregions can be as large as that among regions (Hawkins et al., 2000a), and that variability in ecological

conditions is best explained by a combination of regional and local (e.g. basin-scale) factors. There is also evidence

that the ability of ecoregions to explain spatial variability in some aquatic ecosystem characteristics is no better than

arbitrarily defined geometric regions (Wolock et al., 2004). Our results suggest that the environmental drivers of

streamflow vary substantially even within relatively homogenous regions. The imprecision of estimates of E based

on HUC2s indicates much heterogeneity in environmental factors that influence streamflow at that spatial scale.

Precision of all metrics improved when E was estimated from more homogenous regions (ecoregion level 3), but

was still less than modelled estimates for all metrics. Further, because estimates of E based on regions of similar

hydrologic characteristics (e.g., HLR) were also less precise than predictive models, there appears to be strong

evidence that local basin-scale factors (e.g. topography) in addition to (and interactive with) regional-scale factors

(e.g. climate) must be considered when developing estimates of the natural flow regime. Such environmental

heterogeneity within relatively small regions (e.g. level 3 ecoregions) also portends difficulty in estimating E for an

assessed site by using data from reference gages within some proximity (e.g. 100 km radius). Such an approach is

likely to fail in areas where topographic relief or geologic transitions produce sharp differences in climate, soils and
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Figure 5. Observed daily flow variability of pre- and post-dam time periods compared to distribution of modelled expectations at gage #
01151500 (A). Ratios of observed and expected (¼mean of expected distribution) flow variability for each time period compared to distribution

of O/E values at reference sites nationwide (B)
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the pathways of water through a watershed. An approach pioneered by Linke et al. (2005) uses the concept of

proximity in multivariate space (e.g. multiple environmental gradients) to identify sets of reference sites that are

relevant to a test site, which avoids the pitfalls of stratification.

We did not attempt to predict E from pre-defined stream classes as has been suggested by some (Arthington et al.,

2006; Henriksen et al., 2006). The interest in establishing E from hydrologic classes defined a priori grew from the

perceived need to tailor predictions for specific environmental conditions. Although we do not doubt the heuristic

usefulness of stream hydrologic classes (e.g. perennial versus intermittent), we believe the concept holds some

disadvantages for predicting E. The most notable difficulty with hydrologic classes is the inevitable error associated

with accurately classifying non-reference sites. Since classes are based on hydrologic attributes from the discharge

record, sites with known or suspected hydrologic modification cannot be directly classified. Discriminant function

models can be developed that use watershed features to classify unknown sites (Henriksen et al., 2006; Sanborn and

Bledsoe, 2006), but such models will almost certainly add an additional source of error to the ultimate predictions

of E when sites are misclassified. Further, stream classifications based on hydrologic attributes often reflect

differences in climate and topography—which are implicit in ecoregion classifications—when considered at broad

geographic scales (Sanborn and Bledsoe, 2006). Admittedly, there are examples of significant natural differences in

hydrologic attributes among streams within relatively small geographic settings (Poff, 1996), but we believe this is

the reason RF models were so successful at predicting E for most hydrologic metrics.

One potentially counterintuitive result is that for all metrics, a single national model performed just as well as

regional (HUC2) predictive models. We expected region-specific models would be better than a national model at

extracting relations between environmental gradients and hydrologic metrics because some natural variation (e.g.
Copyright # 2009 John Wiley & Sons, Ltd. River. Res. Applic. 26: 118–136 (2010)

DOI: 10.1002/rra



Figure 6. Observed daily flow variability of four time periods compared to distribution of modelled expectations at gage # 01654000 (A). Ratios
of observed and expected (¼mean of expected distribution) flow variability for each time period compared to the distribution of O/E values at

reference sites nationwide (B)
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climate) was ‘controlled’ through the regionalization process. It is apparent, however, that environmental

heterogeneity within HUC2 basins was comparable to that manifested at a national scale. Alternatively, our

statistical models may have been unable to improve predictions ofEwithin HUC2 basins because important regional

drivers of variation in flow regimes were inadequately represented by our predictor variables. Nevertheless, a single

nationwide model is clearly appealing for conducting national assessments because there would be no need to

aggregate multiple regional assessments based on models with potentially varying performance.

Example applications in hydrological assessment

Our application of predictive models was limited to a few illustrative examples, but demonstrated the approach

has promise for estimating natural flow regimes and quantifying hydrologic alteration. The accuracy with which the

predictive model estimated pre-dam flow characteristics at the two-dammed sites was not surprising given the

demonstrated performance among reference sites. Our assessment of the dammed sites revealed that the dams did

not alter hydrology equally, which is likely due to differences in dam operations and reservoir characteristics

between the sites. A detailed analysis is beyond the scope of this study, but cursory examinations found that the

reservoir above the hydrologically altered site had much larger storage capacity than that of the unaltered site. Our

retrospective hydrologic assessment of an urbanized basin revealed a steadily increasing trend in flow variability.
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Figure 7. Model estimates for the expected low flow duration (days year�1) for the stream network in the Provo River basin, Utah. Observed
values for the period 1980–2000 are given at each gage
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Previous trend analyses at this site (Jennings and Jarnagin, 2002) found that flashiness increased as the basin

urbanized, even after correcting for trends in precipitation over the same time period. Our results suggest that

significant hydrologic alteration (O/E¼ 1.2) occurred within the first 20 years of the flow record, over which time

impervious cover in the basin increased from 3 to 21% (Jennings and Jarnagin, 2002). Impervious land cover

increased to>33% through the remaining flow record and appears to have caused greater flow variability, a pattern

well established in the literature (Paul and Meyer, 2001; Konrad and Booth, 2002).

Various thresholds for assessing hydrologic alteration have been proposed (Richter et al., 1997b; Henriksen

et al., 2006), and will ultimately be influenced by known ecological responses to hydrological alteration and wider

societal values. Nevertheless, our results indicate that the daily streamflow variability observed at one dammed

sited and in the urbanized basin was well outside the ranges of variability caused by natural variation and model

error. We emphasize that the presence of significant hydrologic alteration at the sites we examined does not imply

that ecological degradation has also occurred.

Application of RF models to estimate E for ungaged stream segments, as demonstrated for the Provo River, is

possible but requires some caution. Model predictions agreed well with observed low flow duration at the gage in

the undisturbed headwaters, which is remarkable given the fact that the model was developed at a national scale.

However, we did not evaluate whether the environmental settings (i.e. the suite of predictor variables) of all stream

pixels within the Provo basin were within the scope of the reference sites used in model development. Statistical

evaluations of this sort are routinely performed when assessing biological condition with predictive models (e.g.

Ostermiller and Hawkins, 2004), and could in theory be developed for RF models. Predictions of E for river

segments that do not meet this test should be interpreted with caution.

Hydrological assessments and fixed values of E

Assessing hydrological alteration with a fixed E is not ideal in all situations. We suspect that fixed values of E, and

O derived from several years of record, are suitable for regional or national assessments of average flow conditions for

a defined time period. However, the natural flow regime is temporally variable because it is influenced by temporal

variation in precipitation and runoff patterns. Fixed values of E are therefore not suitable for site-specific assessments
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or setting specific river management goals. We offer several possible ways to address this deficiency. First, as

demonstrated in the example assessments, E can be expressed as a distribution of estimates created during cross-

validation within the modelling process. When expressed as a distribution, predictions of E for a site represent

uncertainty associated with error at all stages of the measurement and assessment process, including spatiotemporal

variation in flow over the period of record. From such a distribution, bounds of acceptable variation in E could be used

as thresholds for assessing a single site through time. Indeed, this general concept has been applied to site-specific

assessments where E was derived from nearby or pre-disturbance gage records (e.g. Richter et al., 1997b).

An alternative approach is to estimate E for various percentiles of the hydrologic metric. For example, separate

models could be developed for the 25th, median, and 75th percentiles of low flow duration, which when applied to

an assessed site would provide bounds of ‘acceptable’ deviation for O. An additional approach is to construct

separate models for estimating E for years of above-and below-average precipitation. For example, a ‘dry year’

model could be developed using reference site hydrologic and climatic data from years that were below the long-

term average precipitation. A separate model could be developed using data for years with above-average

precipitation. Such models would in theory provide upper and lower bounds of E for an assessed site that bracket

annual variation in precipitation and runoff.

Lastly, we emphasize that Emay not be stationary due to long-term changes in rainfall and runoff patterns (Milly

et al., 2008). E is based entirely upon the period of record summarized by the hydrologic metrics at the reference

sites, which was post-1950 in this study. The effects of long-term climate change on E cannot be ignored, and could

be examined by developing models from different periods of the flow record with corresponding climate data.
CONCLUSIONS

We conclude with an important caveat and a call for further research. For the majority of the nation’s rivers and

streams the natural flow regime must be modelled. Our intent was to suggest a nationally consistent method of

modelling expected natural characteristics of the flow regime in gaged and ungaged rivers and streams. The

modelling approach we described successfully predicted average attributes of the natural flow regime at

undisturbed sites across the nation and in diverse environmental settings. We believe the models can be applied to

all stream segments for which basin-level predictors are available and that occur within the experience of the

reference sites we identified. Further, quantification of hydrological alteration is now presumably possible at

thousands of gaged streams across the contiguous US with sufficient periods of record for the calculation of O.

Although our ability to quantify the expected natural flow regime and deviation from it have improved, the

ecological effects of hydrological alteration are still largely unknown. As a result, ecologists are still unable to

specify what constitutes an ecologically benign deviation from natural streamflow conditions (Arthington et al.,

2006). Until we better understand the relationships between ecological health and the magnitude of hydrological

alteration, broad-brushed management prescriptions allowing specific magnitudes of deviation from natural flow

characteristics (e.g. 25% removal of low-flow magnitude) are without scientific foundation. We join the chorus of

others (Richter et al., 1997b; Arthington et al., 2006) in calling for studies that simultaneously assess ecological

conditions and hydrological alteration in an effort to better understand how increasingly scarce water resources can

be managed to balance the needs of aquatic life and human society.
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The 10 most important predictors in national-scale random forests models predicting hydrologic metrics
Metric Top 10 predictors (in decreasing importance)

Daily variability Mean number of days with measurable precipitation, per cent of soils with high runoff potential,
per cent soils with moderately high runoff potential, mean soil erodibility factor, per cent fine
(<0.074mm) soils, per cent silt soils, per cent of soils with moderately low runoff potential,
mean soil permeability, October mean precipitation, per cent sand soils

Skewness May mean temperature, September mean temperature, August mean temperature, mean number
of days with measurable precipitation, mean monthly maximum number of days with measurable
precipitation, per cent sand soils, watershed area, mean soil permeability, potential
evapo-transpiration, longitude

Annual runoff Mean number of days with measurable precipitation, mean annual precipitation, November
mean precipitation, mean monthly minimum number of days with measurable precipitation, mean
monthly maximum number of days with measurable precipitation, mean monthly
minimum precipitation, September mean precipitation, mean basin slope, per cent clay soils,
April mean precipitation

Base flow index Per cent soils with moderately high runoff potential, mean basin slope, per cent soils with
moderately low runoff potential, mean soil erodibility factor, mean day of last frost, per cent soils
with low runoff potential, July mean precipitation, per cent fine (<0.074mm) soils, per cent soils
with high runoff potential, mean soil permeability

Annual maximum flow Mean annual precipitation, watershed area, May mean precipitation, January mean precipitation,
mean rainfall/runoff factor, per cent soils with moderately high runoff potential, per cent sand
soils, mean soil thickness, April mean precipitation, per cent fine (<0.074mm) soils

Low flow pulses Mean monthly minimum precipitation, watershed area, August mean precipitation, per cent
soil organic matter, July mean precipitation, February mean precipitation, per cent soils with
high runoff potential, mean soil bulk density, variability of minimum monthly air temperature,
per cent soils with moderately low runoff potential

High flow pulses September mean precipitation, mean soil erodibility factor, mean monthly minimum precipitation,
watershed area, October mean air temperature, per cent soil organic matter, soil rainfall/runoff
factor, November mean precipitation, October mean precipitation, May mean precipitation

Low flow duration Mean monthly minimum precipitation, August mean precipitation, mean monthly minimum
number of days with measurable precipitation, longitude, per cent soil organic matter, December
mean air temperature, mean basin elevation, per cent clay soils, mean soil erodibility factor,
watershed area

High flow duration May mean precipitation, per cent soil organic matter, watershed area, mean relative humidity,
October mean air temperature, August mean precipitation, soil rainfall/runoff factor, mean day of
last frost, mean monthly maximum precipitation, mean basin elevation

Flood interval Longitude, November mean air temperature, February mean air temperature, latitude, mean
monthly maximum number of days with measurable precipitation, January mean temperature,
mean number of days with measurable precipitation, per cent coarse (2mm) soils, per cent
coarse (5mm) soils, variation of monthly minimum air temperature

Flood-free days Longitude, December mean precipitation, October mean air temperature, mean number of
days with measurable precipitation, variation in monthly minimum air temperature,
mean basin elevation, August mean precipitation, basin mean slope, per cent soils with
moderately low runoff potential, September mean air temperature

Predictability Watershed area, soil permeability, August mean air temperature, per cent soils with moderately
low runoff potential, mean number of days with measurable precipitation, variation of elevation
in basin, per cent silt soils, per cent soils with low runoff potential, variation of monthly
maximum air temperature, per cent soils with moderately high runoff potential

Reversals Mean monthly minimum precipitation, longitude, watershed area, soil organic matter,
May mean precipitation, soils with moderately low runoff potential, January mean air temperature,
basin mean slope, September mean precipitation, mean relative humidity
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